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BIFURCATION NEAR FAMILIES OF SOLUTIONS

Jack K. Ilale

Summary: Many investigations in bifurcation theory are concerned

with the following problem . If M(0,0) = 0 and ~M(0,0)/ax has

a nontrivial null space, find all solutions of the equation

M(x,A ) = 0 (1.1)

for  (x ,X) in a neighborhood of (0,0) C X X A .

If dim A = 1; that is, there is only one parameter involved

then the existence of more than one solution in a neighborhood of

zero can be proved by making assumptions only about ~M(0,U)/3x and

However , if dim A > 2, then the problem is much more

difficult and more detailed information is needed about the function

M. A careful examination of the existing literature for dim A > 2

reveals that the additional conditions imposed on M imply ,  in

particular , that the solution x = 0 of the equation

M(x,0) = 0 (1.2)

is isolated (see, for example , the papers on catastrophe theory).

These hypotheses eliminate the possibility that Equation (1.2) has

a family of solutions containing x = 0. Such a situation occurs ,

for example, for M (x,A) Ax + N(x ,A), wher e A is linear wi th a

nontrivial null space and N(x,0) = 0 for all x. There also are

interesting applications where Equation (1.2) is nonlinear and there

exists a family of solutions. For example, Equation (1.2) could be

an autonomous ordinary differential equation with a nonconstant

periodic orbit of period 2 TI with the family of solutions being

~ lI 
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Summary (continued)

obtained by a phase shift. When the differential equation in the

latter situation is a Hamiltonian system , the parameters (A 1,X 2)

could correspond to a small damping term and a small forcing term of

period 211. To the author s knowledge , the first complete investiga-

tions of special problems of each of these latter types are contained

in papers by Hale, T~boas and Rodrigues.

it is the purpose of this paper to beg in the i nves tigat i on  of

the abstract problem for Equation (1.1), especially to extend the

results in the paper by Hale and T~ boa s. 
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BIFURCATION NEAR FAfl .1E~ OJ ’ SOLUTIONS

Jack K. hnle
- Lefschet~ Center for I)”namical S”stoms

. Division of App1i~ d ~-:athematics
l3rown Univers .itv

Providence , Rhode Island 02912/USA

§1. Introduction and statement of problem.

Suppose X ,Z,A are Banach spaces , :1: X x A -
~~ Z is continuous

together with its Frechet derivatives U~~ t h rough  order two. Many

investigations in bifurcation theory are concerned w i t h  the  following

problem. If N (0,0) = 0 and ~~1 (0,0) /~x has a nonLrivia.I. null

space , find all solutions of the equation

= 0 (1.1)

for  (x , A )  in a neighborhood of (0,0) ~ X ‘~ A .

If dim A = 1; tha t  is , the re is only one parameter  involved ,

then the exis tence of more than one solut ion in a ne ighbo rh~ od of

zero can be proved by making assumptions onl’i a b o u t  ~N(0,0)/0x and

~M(0,0)/~x~ X. However , if dim A > 2, then the problem is mu ch mor e
difficult and more detailed information is needed about the function

M. A careful examination of the ox i s tin ~j l i ter a t u r e  fo r  dim A > 2
reveals that the additional conditions JJ~ pOSCd on N :Lnplv , in
particular , that the solution x = 0 of the equation

t1 (x ,0) = 0 (1.2)

is isolated (see , for  example , ( i i  , [2] and the papers on catastrophe

theory in [ 3 ] )  . These hypotheses e l im i n a t e  the  poSs l l) i l ity  tha t
Equat ion ( 1 . 2 )  has a family of solutions containing x = 0 . Such a
situation occurs , for example , for M(x ,\) = Ax ± N(x ,~\), where A

is linear with a n o n t r i v i a l  n u l l  space and N (x ,0) 0 for all x.

There also arc interesting applications wher e  E~~u a t i o n  (1.2) is non-

linear and there exists a family of solutions. For e xamp l e ,

Equation (1.2) could be an autonomous ordinary differential equation
with a nonconstant periodic orbit of period 2fl wi th the fam ily of

solutions being obtained by a Phase shift. Phen the differential

equation in the latter situation is a lianilitonian system , the  para-

meters 
~~~~~~~~~~ 

A ,) could co rrespond to a small .  damp i n ;  te rm and a small

f orcing term of period 2 11 . To the au tho r ’ s k nowledge , the f i rs t

complete inves t iga t ions  of special j roblems of each of these l a t t e r
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types are contained in 14]  , . H
It is the ~~U~~~ OSQ of th is  pape~: to begin  the investigation of the

abstract  problem for Equa t ion  ( 1 . 1 ) ,  espec ia l ly  to extend the results
in [5 ] .  More s p e c i f i c a l l y ,  SU~~~ OSO Equation (1.2) has a one parameter

family of solutions x = p (t ) ,  0 t < 1, p(0) = p (l), which is con-

tinuous together  wi th  de r iva tives  Uj) throu gh  Order two w i t h  p
’ ( t )

dp Ct )  /dt ~ 0 , p ‘ (0 )  = p ‘ ( 1) , p ” ( O )  = p ‘(1) . Boundary conditions on p

- are imposed only to avoid a special discussion at  the end 1)oints of
the curve de f ined  by p. Since N ( p ( t )  , 0)  = 0 ror all t, it follows

that  p ’ ( t )  is a nonzero  element of the null space ~J~(A(t) ) of the

linear operator

A ( t )  = ~N ( p ( t )  , 0 ) / ~~x (1.3)

for 0 < t < l .
If F = { p( t )  , 0 < t ~ 1) C X , the proble m is to characterize the

solutions of Equation (1.1) in a ne ighborhood  of ‘. {0} C X x A .

Suppose ~~(A ( t ) )  is the range of A ( t )  . For the case in w h i c h

di m 9 U A ( t ) )  = 1 codim :~iA(t )), and A = we give a solution to

this problem under certain hypotheses  on ~M ( p ( t )  ,0)/~ A .  One i m po r tan t

implication of the results can easily be stated. Suppose y C A = R
2

is a cont inuous  curve , 0 
~ 

y, 0 E Cl y, the closure of ~~, and suppose

x ( A )  is a solut ion of system ( 1.1) de f ined  and con t inuous  for  ~ G

If the set x ( y )  ~ X remains  in a s u f f ic i e n t l y  snall neic;hborhood of

r and the set x ( - y ) is precompact , th en all limit points of x(A )

as A ~ y app roaches zero belong to 1’ , b u t  x ( \ )  h as  ~ l imi t as

A 0 if and only if cot l (? ,/? 2
) approaches a constant as X E

approaches zero.

§2 . Statement and implications of L C S U 1t S .
~c 4

k
For any I3anach spaces X ,Z , we let C (X ,Z )  be the l inea r  space

of all functions from x to Z which are continuous together with

all derivatives up th rou gh order k. If no c o nfu s i o n  may arise , we

• sometimes write for ck (x , z .  For any f i n i t e  col 1ect~ on of ele-

ments  q 1, . . . ,q. of a l3anach space , we let  
~~l ’ ,q~~] denote the

linear subspace spanned Ic; 
~~~ ‘ 

. . . , q~ . By our ho nd ar y  condi t ion on

p , we may suppose p C C
2 (H ,X) and is 1—per iod ic , that is , ier~.~ diu

of period 1. Suppose [p ’ C t )  I = 9UA(t)) and there in a 
~ 
E C (N , ::)

1—periodic , such that [q(t)J ~~ ~,~( A ( t ) )  = Z .  I f  A ( X )  is the

Ba nach space of boun~1ed li near  operatocs  on >: , i~~L U ~ C~ (R , -r ’ ( X ) )

be such that  U ( t )  is a pro j ect i on  O nt u  ~~ (~~~( t ) )  l et

E EC 2 (~~, c4(Z)) , F ( t )  a p ro j ec t ion  onto .~~A ( t ) )  , I — N Ct )  a pro—

~~~ jection onto [ q ( t ) J .  Also Suj ) I )OS C U,E are l—per ~ odi c. 

~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~ £ L !~L’~~~
_
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i-periodic, by the r e l a t ion  3

a. (t)q (t) (I-E (L); ~:i ( p ( t )  , O)/~ A .~ (2.1)

-

i 
Our first hypothesis on aCt) = (a

1
(t ) , i.2 ( t ) )  is

(H
1
) aCt) ~ 0 for  t ~

If ~ (t )  = 

~~2 C t )  
~~ l C t ) )  , then ~ ( t )  ;~ 0 b” I1”pothesis (il l) and

we can let qt (t) be the angle measured  in the counterclockwise direc-

tion which ~ (t )  makes wi th  the h o r i z o n t a l  ax i s .  The [unction

~ E c2 tr~,~~ and is 1—periodic.  i ’ C  impose the following hypotheses

on ~ :

(H2) The function ~~~
‘ Ct) has at most a finit e set of zeros

it
k
, k = 1,2,...,n} C [0,1) and ~“ ( t ~’) / 0 fo r  k = 1,2,...

(H 3) ~ (t~ ) ~ ~~t
k), j ~ k, j, k = l ,2,...,n.

We now state the main resu l t s  of the paper t o g e th e r  ~•.‘ith  l i c a —

tions. The proofs will be given in Section 3.  Suppose y is a smooth

curve in ~2 througi~ the origin. If for an q 
~ 

y, q / (0,0), L 1

denotes a positively oriented normal to L at q, we say y is

crossed from right to left at q if is crossed by movintj along
Lq in the posit ive d i rec t ion .

Theo rem 2 . 1 .  I f  h ypotheses ( h I l
) _ ( 1 h 3 ) a re s a t i s f i ed ,  then t h e r e  ex is t

nei ghbo rhoods U of T , V of ~ = (0 , 0 ) ,  and s > 0, such that, for
each t 3 E C t , k = 1, 2 ,...,n ) , th er e c o r r es pon d s  a unique curVe

S~’. C V , t an ge n t  to the  i.~ -,-t ( t ~~) .
~~~ = 0 at zero ,  fl ;V ~

each intersects lines through the origin in at most one no;~zer o

ppint, these curves intersect on ly  at (0 ,0) , the  n umber of solutions

of Equat ion  (1.1) ir,creanes (or decreases)  h ’~ exac t  l v  two as is

~ I 
crossed f rom r i g h t  to l e f t  i f  t~ is a r e lat i ve  m i n i m u m  (or  m a x i m u m )

The c~ rves ~~~
‘
. can be defined pa r;u~c tr ca liv i n  t:he f o r m

3
A = sf (s), 0 < s < s0 where f . ~~C ([0 ,s

~
)i
~~~

), H~~
(s)I = 1,

0 s < s0
, and a(t~~) •

~~~~~~ 

(0) = 0. If ~~~~~ a r e  ~hc absolute 1 i51

mum , maximum ,  r e spec t ive ly ,  of ~ sand

5(V) = (A C V :  A~~~* ( s )  < 0 < A . 3 ~~~( s ) ,  0 s <

where A sB * ( s)  , A s~~ (~~) are the ciirv ’s corresponding to t~

and t~~, th en there arc  no solutions of Equation ( 1.1) in U f o r

A E S (V i , at least two in  S~ (V )  = V~ S (V ) an d  al l s o l u t i on s  are

dist inct  in the j ntcr ior  of Sc (V) .
- —..~~~~—— —— , - -~ —•~.. - -~- --- —— . —• — ~~~~~~~~~~~~~~~ 

— ~~~~~~~~~~~ 
.
-~ . - - - T~~~~~~~ - - -



~~ - r ~~~~~~ i—~~~~~~~~~~~~

- • rhe curves ~ 1. in Theorem 2.  ~rc called the bifurcation curves.
J HTo see how easy it is to obtain C comp lete dual i LaL:ivc~ pict ure  of

the h i f u r c a t i o n s  near  A = 0 , let us consider  a f e w  special cases.  If

~ ( t )  has only one maximum at t~ and one i:~intmum at  ti- , there are

only two b i f u r c a t i o n  curves  ~~~~~~~~~~~~~~~~~ cor re spon d in ~ to

respectively. There are no solut ions  of E quat ion  (1 .1) in U for

A E S (V) and exact ly  two solu tions i~ S~ CV ) which  are distinct in

the interior of SC CV) (see Figure 1) . If there  are two maxim a and
r

two minima C there mus t  a lways be an even nuiube r of ma x].ma and m in line

by periodicity) , then the situation is dcpicted in Fi gure  2. By

chang ing the function , one can ob tain  ev ery Iossibie rotation of
these pictures.

A.)

• / \~~ / /
\ (.

/
(2)~~~~~~~~

(2) 

‘2/ ~~~~( o ) \ \ \ / ,~~
;
~~~ A

1 
( 2  

—~~~~~~ A 
1

(2)

~~~~~V~~Z (2)
(0)

H 

V
Figure  1. F i g Ur e  2.

Another  i n t e r e s t i ng  special case is e 1( t )  = —1 , t C R. Hypothesis

is al ways sa t i s f i e d , 2 ( t )  = C t )  , 1), ~ (t) = Cot 1
a 2 C L )  and the

hypotheses 
~~~~ 

, ( I L )  are equ iva l en t  to

(1J~ ) The f unc t ion  h as  a mos t f i ni t e set of zeros

k = l,2,...,n) C [0 ,1) and a~~(t
’
~) ~ 0, k =

U~~) ~2 (t~ ) ~ u2 (t
k), j ~ k, j ,  k = l , 2 , . . ., n .

Theorem 2.1 f o r  t h i s  case is essentially contained in [ 5 ] .  S ince

a1
(t )  = —1 , the set S(V) must contain the A 3 —axis and , thus , the

bifurcation diagram is a rotated version of the ones in Figures 1 and 2.

The following result gives  some i n forma t ion  about  the possible be—
havior of the solutions of Equation (1.1) as A -

~~ 0.

Th~ ôr~~~ 2.2. £uDnosc~UynQth~sas !H~).-U~h) ~~~~~~~~~~~ S sfi~4. U,V ~~~~~~~~~~~
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heighborhoucs  j i v c n  in t n J J L Cm .~~~~ 1, ~~~~~~~~~~~~~~~~~~~ 7 0 conti .~~- .n

cur~e defined parametricriflv 
by A . ~ A (r ) , A = A~ ( i ) ,  0 ~ 1 1,

and A 1(T) + A 2
( r )  = 0 if and on i’-’ i f  r = 0. Also, suppose y C V

and for each poi.nt (A ~ ( 1 )  , \ .~. ( i ) )  ~ y, th e r e Ls a s olu t i o n  x C r ) C U

of Equat ion  ( 1.1) which is continuous in 1 on the half open i n t er v a l .

(0 ,1]. If

= {x(~ ), 0 < I ~ l~ C X (2.2)

is precompact , and

~~~~~ 
lim inf 0

cOt 1 (A 1 (i)/A ~~(r)) ( 2 . 3 )

( ‘ )  Urn Sup 1 0
c0t 1 ()~ ~~~~~~ 

~
‘
-2 ~

then  t h e r e  is an i n te rv a l  1( y )  C [0,1] such that (I (y) ) =

~~~~~~ 
,~~~1 ( y )  I apd

= {p ( t ) , t E l ( y ) } .  ( 2 . 4 )

A consequence of the above result is the following

Corollary 2.1. If ’(,x(T) satisfy the cond i t ions  of Theorem 2.2, then

a necessary and s uf f i c i e n t  c o n d i t io n  t h a t  x C r )  have a limit as I - 0

is tha t  cot 1(A 1( T ) / A 2 (T)) has a limit as 0. in this case ,

x ( T )  p (t 0 ) where  t 0 C [0 ,1) is a so l u t i o n  of the  cqua Lion

cot 1(A1(t)/A 2 (t)) 
=

The fact that one can obtain solutions which ar e not  con t i n uous :n

A at A = 0 is not surprising . Consider  the sca lar  equa tion

A 1
x — A 2 

= 0 which has tho solution x =  for A
1 ~ 

0: 
- 

A l o n g  a

curve y C IR , this solution has a limit as A -
~~ 0 in ~~

- it  ari a on ly

if A 1/A 2 appr oaches a limi t as A -
~~ 0 in

Let us now make a more interesting appLication to the second order

scalar ordinary differential equation
.t.

-1’~’• ~4. g (x) + A 1
h ( s )  

~ 
— 0 ( . ~ . 5 )

(‘S

where h , f are continuous and 1—periodic , g C C2 (N , R) , xg ( x )  > 0 for

- 

x ~ 0. For A 1 
A 2 

0, the equa t ion
2

+ g(x) 0 (2.6)
• 

- ds

has a general solution of the form x = )(o (a)s + L ,a )  , (a ,t) C

where ç ( ç , a)  = ~ (~ +l ,a) for all (~~, a) , an d (a ,0) (x(0) ,d x ( 0 ) / d s )

We suppose Equation (2.6) has a nondegenerate l~~ e r i o d i r  o r b i t;  t h a t  is ,

~

. 
~~~~~~~~ ~~ ~~~~~~~~~~~ 

o = 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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• 

• ~et z = jy: ~~~ 
-
~ ~ wiiicn are con ~uous  ~~:o  i— uL~~.uo i c j  ~~ii~~ ~ .

- ; supremum norm on Z .  Let x Cy • Z: v 1iis continuous ( tCi iV c 1 t~~VCb

up through order two) and use the Lu;ual C
2 norm on X. .1 f we define

• M: X x A -
~ Z , A = ~2 by

- 2 ~~. •

~i (x,A ) (s) = + g(x(s)) + A 1h(s) ~~~~~~~ 
-

ds

then we are in a Position to apply the previous results. In f a c t , if

p(t) (s) = q~(w(a0)s + t , a
0

) , then p ( t )  C x and s a t i sf i e s  E ( p ( t )  , O) =

= 0, 0 < t < 1. Also, Hypothesis (2.7) implies th at d.ij i~ ~
(A ( L ) ) 1 =

codim ~A ’( A ( t ) )  , where A Ct) = a M ( p ( t )  ,U)/~x. Furthermore , the func tion

~ (t) is a basis for ‘3~(A(t) ) and a comp lement for 01’ ( A ( t )  ) . It is

now an obvious calculation to see that the fru~cttc~s (t) ,o~ Ct ) in

(2.1) are given by
L 

-~

= —
~~ 

h(s)p (s+t)~~ds , a 2
( t )  = p (s+t)f(s)CS. (2.S)

J O J o

If (~ 1,a2
) satisfy (hI l

)_ (11
3) , 

then the above re su l ts a re d i r e c t l y

applicable to the determination of the bifurcation curves for the

1—periodic solutions of Euuation ( 2 . 5 )  wh i c h  lie in a n ei hborhood of

the periodic orbit F C of Equation (2.6) defined by

F = C ( p ( s ) , d p ( s ) / d s ) ,  0 < s < 1 . For h (s) = 1 , 0 -
~ s -

~ 1, these re—

suits were previously obtained in [5] . A d et a i l e d  explanation of the

manner in which the 1—periodic solutions wind onto the  c y li nd e r  F ~

as A -
~~ 0 along a curve C is g i v e n  in ç~~j . Also , a reasonable

physical explanation fo r  the  discontinuitics of the solutions at

— A = 0 is given in [ 5 ]

§3.  Proof of the result s .

Our object ive  in this section is to give the  Lsuentiul elements of

the proofs of the results of Section 2. r f h c~ notat:~on of that section

will be u sed wi t hout  cxl)lanation.

By the I mp l i c it  F u n c t i o n  Theorem and the compactness of F , one

ob t a in s  the fcllo’:inL3 result.

- Le~ na 3.1. There is a ~ > 0 such that the transformation x -
~~~~

x p(t) + y, y C [ 1 — u ( L ) J x , ( 3 . 1 )

from a neighborhood of 1’ to [0,1) ~ (.I—U(tflx is a diffeomorphism

for t ~ [0 ,1), 
~~ 

< 
~~~

.

For the determination oC all so l ut i o ns  of h c U f l L i O f l  ( 1.1) in C

sufficiently small neighborhood of I’, Lcruna 3.1 implies that it is

s u f f i c i e n t  to consider  x given by Equation (3.1) and ~~ in a
suff ic ient ly  small neighborhood of zcr~~ If x is d soluLi00 0f



- i  
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Equat ion (1.1) and y is defined h Equation (3.1) , then y sa~~i s —  /

fies the equation 
-

0 M ( p ( t )  + y , A )  ‘d ’ A ( t ) v  + h (L ,v ,A )  (3.2)

where N ( t ,y,A )  = r~ ( p ( t )  + y, A )  — A ( L ) y .  B’i the b o u n dar y  C O r i O l t l O f l S

on p, we may consider  this equation for t C R. Decomposing this

equation into its components  in E ( t ) Z  and [ I — E ( t )  ] Z and u s i n g  the

f a c t  that A(t ) as a mapping from {I—U (t) JX onto E ( t ) Z  has a

bounded inverse ( this  is the  method of 1~1a i ) u n o v — ~~c hIu .L~I L ) , ther e e xi s t
A

0 
> 0 , ó > 0 and a unique function y~ C C~ (G~ ~: { A j < A 0},

( I — u ( t )  ) X )  ~~ (t , 0) = 0 for all t , such t h a t  E c iu a t i on  ( 3 . 2 )  has  a

solution for t ~ R , y~ < i , < A~ if and onl”- if y v~~(t ,A )
and (t , A )  s a t i s f i e s  the b i f u r c a t i o n  equat ion

0 = F ( t , A )  d~ f (I -E ( t ) )  [H (p C t )  + v~ Ct , A) , A) — A Ct) y~ Ct , A) ] C3 .3)

If we de f ine  the scalar  f u n c t i o n  f (t, A ) by the  rela tion

• F (t, A) 
d~ f i (t, A) q ( t ) ( 3 . 1)

then the b i f u r c a t i o n  equat ion  is e q u i v a l e n t  to the  scalar equation

f(t,A ) = 0 (3.5)

for t E R , A I < A 0. Since y * (t O )  = 0 for  al l  t , it fo l l ows  tha t

f(t,0) = 0, t C ~~~~. (3.6)

Rela t ion  (3 .  6)  r e f l ec t s  the fact t h at  E q u a t i o n  ( 1. 2 )  does not have an

isolated solution. E iuality (3.6) is the basic reason why t hi s

problem d i f f e r s  from the usual bifurcation prob lem .

If A = R2, A — 

~~l’’2~ ~ 
IRE , then

H ~f (t 1 O)/~~~ = a~~(t)1 j = 1,2 (3.7)
-

~ where each a~ , j = 1, 2 , is d e f i n ed in E q u at i on  (2 .1) . The function f

can thus  be wr i t t en  as

F Ct , A ) = a( t) . A + h ( t , A

where h(t ,0) = 0, ~h (L,O ) / ~ A = 0. For any A / 0, so lv ing  E cu at i o n

(3.5) is equivalent to solving the equation

e (t) (A/~ A () + h ( t , A ) / j A ~ = 0. (3.8)

1
If A/~ A~ = 3, I 1 ( t , 3 , I A ~~) = h ( t , O I A ! ) / I A I ,  then F E S  = {~ ~~~l~~~:

= 1) and II is C 2 in i t s  ar cj u r n c n t~~. The discussieri of the

solutions of E q u a t i o n  (3.8) becomes e qu iv a i  cut to the discuss~ cu of
• the equation

-

~ 

_ _ _ _ _ _ _ _ _ _ _ _ _
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for t E [0 , 1 ) ,  3 E 51 
~~ smal l  ~~~~~ n a n n e g a t i C — c.  in t he  fo 1lo~.-t n g ,

we always understand 3 ~
-: S~ eve d~oUqh i t !~a nut be said e x pL i c i t l y .

- If a C t 0
) 0~ = 0 , t h en  c ( t 0 13 0 1 0 )  = 0 .  i f  i ’ ( t 0

) 
~F- 0 /~ 0

, then
- 

• ~G(t0
, 0~~, 0)/st / 0 and th e  l i nu l i c i t  F un c t i o n  ‘~h eo rcm imp l ies there  is

- 
an s

0 
= s

0
(t 0, 

~~ 
> 0 and  a u n i que  s o l u t i on  t~ (~~~~ ) of E qu a t i on

1 (3.9) for F —
~o l 

~o’ 
0 

~~~ 
t * (F 0 1 0) t 0 .

1 
To comp let e the  proof , we need to r e f o rm u l a t e  I lv u o t h es e s  (1 1 2 ) ,  (1-13

)

• in an equivalent form. The vec tor  o ( t )  d e f i ne s  a c o n t i n u o u s  l in e a r
7 7

• f u n c t i o n a l  on ‘i~~ by the  r e l a t i o n  n Ct) A , A C J~~. if  the nul l  space

— 
- of ~ (t) is denoted i:y ~ (c~ Ct )) , th -~n (n•~ ( t )  , -ct

~ 
( 0 ) )  is a basis

fo r  ~~(ct Ct) ) . By c o m p u t i n g  ~ ‘ ,l ” , one eas i l y observes  t h at  ( 11 7 ) 
‘

are equivalent to

I (H 2
) The vector  ( t )  ~ •R~ is o r th o q on a l  to  J~ (a ( t )  a t  most

at a finite number  of p o i n t s  ~~~~ k = l , 2 , . . . , n }  C [0 ,1) and
- n ’ (t E ) is not o r thogona l  to ~J~(O ( tH )  f o r  an y  lz = 1,2,... ,n.

- 

. U&3 ) The 1i~ es th rough  the  o r igin  and a ( t a ) and (~ (t k ) ar e not

colinear for j / k , j , k = 1, 2 , . . ., n .

The numbers  t k here are the same as before.

I

- 
If CL. ’ (t 0

) ~ 3 (~ = 0 , then h ypo thes i s  (11
2

) im p l ies n ’ (t0) 
.F
~ / 0.

- • Thus , the Imp l icit F u n c t i o n  rj~heorci~l imp l i e s  t h e r e  is an S 0 
=

s0 (t 0 ,0 0
) > 0 and a Fu n ct i on  t * ( F , s ) ,  t~~( i - - 0 1 O )  = t 0 , such t h at

- 

-
~ ~, G ( t * (3 , s) , f , s ) / a t = 0

fo r  I 0 — 0 ~! < s0
, 0 < s < S

0 
and t * H , s) ~s u n L a u e  in Lao r eg i o n

Jt—t o~ < s~~. Thus , the f u n c t i o n  c ( 8 , s) ~~~ G ( L k ( F , s ) , 3 , s) is a

-~~~ • 
maximum or m i n i m u m  of C ( t ,3 , s) w i t h  respec t  to t at ( f , s ) .  A few

e lemen ta ry  c a l c u l a t i o n  show t h a t  Q(3 01 0) = O~ 0)  /~~i~ = ~ C t 0
)

Therefore , the derivative of 0 ( 0 ,  s) w i t h  respect to 0 on the sphere
• 1 - • ‘ • -

S at  a = s = 0 is tue i n n e r  product ot the vector a (t 0
) w it h

a unit vector orthogonal to 0~~. f l ut  t h is  vector w ill be a non~ cro

cons tan t  t imes a ( t  ) since ~~(t  ) / 0 by N y p O t h e u l s  ( I I , ) .  Cau se—
1 0 1- 
‘ quen tl y ,  y ( f ~~, O ) / ~~3 on S is nonze ro .  ‘I n c  Implicit Function Theorem

- impl ies  there  is a ~ (F e ) ‘ 0 and a function Cs ) C S1, F~ (0) =

such that QC 3 * (s),s) 0 for 0 s < ~~( F ~~) d e scr ibes  a c u rv e .

On one s ide  of th i s  curve , t he re  ar e  two si m p l e  s o l u t i o n s  of E c u a t t on

- e (3.9) and no solutions on the othor side. In turns of the  orig ina l  co-

o r d i n a te s  (A 1, A 2
) , t h i s  implies there ire t~-:o solutions of ~~ 1ua t1o~

•

~~~~~~~~~ 

• 
I’  (3.5) near t0 on one side of t he  curve  A ~3* ( )  () s -:

and none on the other This C UL V O  in A-space is d h ~ ~uL cdtiOfl c~ Lv~~~
_

~~~~
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and is t a n g e n t  to the l ine  n C t 0) 0 at 0. I’he tac t that the

number of so lu t ions  increases  or o :reases (I S stated in the theorem is
clear.

The above an al y sis can be app l i n d  to each of th e p o i nt s  t~ in

Hypothesis  (1- 1 2 ) to ob ta in  an s0 > 0 such t h a t  a l l  so lu t ion s  of
Equat ion (3.9) for  I t — t - f l  < s 0 , 0 C S~~, 0 s < are d e t e rm i n e d  0”

the a rgument  above. We obtain  the b i f u r c a t i o n  cu rves  as wel l .  The
complement of the i n t e rva l s  t—t~~j < s~~, j 1 ,2 ,... ,ri , in [0 , 1) is

com pac t a n d ~~ ‘ (t 0 ) • o
~ 

/ 0 f or  any t 0 ,0 0 s at i s E ’~ inq  a ( t 0
) .F ~ = 0.

A repeated app lica t ion of the imp l ic i t  F u n c t i o n  Theorem shows one can

• choose so that no further bifurcations occur in this complement

for any 0 C S
1
, 0 < s < s

0
. R e t u r n i ng  to the  o r ig i n a l  coo rd ina t e s

(A 1,A 2) , we see that the complete bifurcation d i ag r a m  has  been obtained

for  a f u l l  ne ighborhood of A = 0.

To descr ibe p r ec i s e ly  Lhe bifurcation p a t ter n  as s t a t ed  in Theorem

2.1 , we need to know tha t no two b i f u r c a t i o n  c u r ve s  o b t a i n e d  by the

above process co inc ide .  This  is the only reason h ypothesis (11
3
) is

imposed. This proves the first part of Theorem 2.1.

The last part of the theorem is clear fr o m the def i nitions of the

terms involved . This  completes the proof of T~icore~n 2.1.

To prove Theorem 2 .  2 , we f i r st note  that the method of Liapunov—

Schm idt implies there  is a T > 0 and a c o n t inu o u s  f u n c t i o n  t C T )  C

[0 , 1] ,  0 < T < T 0 such t h a t  the s o l u t i o n  x ( r )  is given  by

x ( T i  P (t  C T ) )  + ~~ ( t C T )  , A ( -U ) , 0 < 1 T
0

,

where  y * (t , A )  is the solution of Eouation ( 3 . 2 ) ,  ( t ( T ) , - \ ( T ) )  s a t i s fy

• Equation (3.5) or, equivalently, Equation (3.8) . Suppose t h e re  is a
— 1 .

‘ seq u en ce T~ -
~ 0 sucn t h a t  cot (A

1
(T .)/\ 2 ( r ~~) )  • : -

~~ 
C I0 ,2r] as

j -
~ ~~, or , equivalently, A ( T ~~) / I A  ( T  C S~ as j -

~ 
‘~~~. Without

loss of generality , we niav assume t (T .) -. t 0 C jO ,IJ as j -
~~

Then x ( T . )  -
~ p ( t 0 ) ,  a ( t 0

)~~F 0 
= 0 , ~(t 0) = ~~~~~~ Since all functions are

con t inuous , the  conclusion of Theorem 2.2 Fo•11o~-.s i m i n e d iat e l , a nd the

proof is comple te .
To prove Corol lary 2 .1 , suppose the cooP iL .~ons oF  Theorem 2.2 are

sa t i s f i ed  and the int e r v a l  
~~~~~~~~~~~~~~ 

consi sts of isore than on e

-
• 

poin t, then x ( T )  cannot have a limit as T -
~~ 0 althoug h every l im it

point  s a t i s f i e s  Equat ion  ( 1 . 2) .  If x ( T )  has a l im i t  as T -
~ 0 , then

Y(y) is precompact and i t is , t h e r e f o r e , necessa ry  t h a t

cot
1 (A (T)/-r ( t ) )  app r oach a lim i t  as u -

~~ 0.  Conversely , if

-

~~ 

as T -
~~ 0, then A C U / I X (C ) 3o C s  as

~~~~~~ T 0 and a (t CT ) ) .00 
0 as T -

~~ 0 from th e argument used in the

— ~~~•-— -~~~ -—s—-- ~~~~~~ -- -- S—— - — —— ~~~~~~~~~~~~ ~~~—- - • • - • ~~~-~~-
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• . proof of The or em 2 .2 . Hypothesis ul ,) .iwpl L O S  L i i ’ Set  of L C [0 ,1)
such that a (t) • = 0 in i s oiaL~~i . S i nc e  L U )  U ; ~~~~~~~~~~~~ f o r
0 < T 1, this i iiplie s t ( r )  to (2 ~t

k, h = 1 ,2,...,.’i) as - 0.
The ar gumen t used in the proof of Theorem 2. 2 im p l i e s  x ( i )  

~ p (t 0
)

as t -
~ and the proof of Corol lary  2 .1 is complete.
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then the existence of more than one solution in a neighborhood of
zero can be proved by making assum ptions only about M(0 ,0)/)x

and M (0,0)/9xaA. However , if d im A > 2, then the prob lem is
much more difficult and more detailed information is needed
about the function M. A careful examination of the existing

literature for dim A > 2 reveals that the additional con-

ditions imposed c:-~ M imply, in particular , that the solution
x = 0 of the equation

M(x,0) = 0 - . (1.2)

is isolated (see, for examp le, the papers on catastrophe theory) .
These hypotheses eliminate the possibility that Equation (1.2)

— has a family of solutions containing x = 0. Such a situation

occurs, for example, for N Cx, A ) = Ax + N (x, A), where A is linear

-
~ with a nontrivial null space and N(x ,0) = 0 for all x. There

also are interesting applications where Equation (1.2) is nonlinear
and there exists a family of solutions. For example , Equation (1.2)

could be an autonomous ordinary differential equation with a

nonconstant periodic orbit of period 2fl with the family of

solutions being obtained by a phase shift. When the differential

equation in the latter situation is a Hamiltonian system , the

parameters (A 1,A 2) could correspond to a small damping terni and

a small forcing term of period 211. To the authors knowledge , the

first complete investigations of spec ial problems of each of these

latter types are contained in papers by Hale , T~boas and Rodrigues.

It is the purpose of this paper to begin the investigation of
the abstract problem for Equation (1.1), especially to extend the
results in the paper by Hale and T~boas.
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